

GCRF Sustainable futures for the Costa Rica dairy sector – training workshop, CATIE, 5-6th October 2017

Flux calculations using the IHF mass balance method with shuttles

Tom Misselbrook

Data required

Flux from treated area = $(IHF_{dw} - IHF_{uw}) / x$

Heights of shuttles on main and background mast

- Duration of sampling period
- Fetch length for sampling period
- > Amount of ammonia collected in the shuttle
- 'Blank' value for shuttle

Fetch length

Need to be weighted average according to changing wind direction

- Calculate fetch length for each 5-min period
- Requires wind direction

See spreadsheet example

Ammonia collected per shuttle

- \succ Volume of water used to extract (e.g. 40 ml), V_e
- Lab concentration of extract (e.g. 20 ug ml⁻¹), C_s
- Average lab concentration of 'blank' shuttles, C_b Mass collected, M (ug):

$$\boldsymbol{M} = (\boldsymbol{C}_s - \boldsymbol{C}_b) \times \boldsymbol{V}_e$$

Horizontal flux per shuttle

- Mass of NH₃-N collected, M (from previous)
- Effective cross-sectional sampling area of shuttle, A (m²)

From Leuning paper A = $2.42 \times 10^{-5} \text{ m}^2$

(Actual area of orifice in baseplate = $3.85 \times 10^{-5} \text{ m}^2$)

Fig. 1. Schematic diagram of ammonia sampler.

Horizontal flux per shuttle

- > Mass of NH_3 -N collected, M (from previous)
- Effective cross-sectional sampling area of shuttle, A (m²)
- Sampling duration, t (s)

Horizontal flux, F (ug m⁻² s⁻¹): F = M/At

Integrated horizontal flux per mast

Integrated horizontal flux per mast

